Abstract
Purpose: This study explored the effects of low-dose and low-dose-rate irradiation in human lung fibroblast CCD-18Lu cells and examined the role of AKT (protein kinase B, PKB) in cellular responses.Materials and methods: We examined cell survival after chronic low-dose irradiation (0.01 Gy or 0.05 Gy) with challenging high-dose (2 or 10 Gy) irradiation. We examined the effect of AKT activation on cell survival after chronic low-dose radiation using transduced cells with retroviral vector expressing constitutively active AKT (CA-AKT).Results: Chronic low-dose priming irradiation increased cells viability against the challenging high-dose irradiation. Irradiation at 0.05 Gy increased cellular levels of AKT and acinus long form (L) and short form (S). The chronic low-dose radiation promoted cells proliferation in the exogenously expressed CA-AKT cells. It also increased nuclear factor-kappa B (NF-κB) activity in a biphasic induction pattern. Suppression of NF-κB activation by mutant form of inhibitor of kappa B alpha (IκBαM) antagonized the radiation-induced expression of AKT and acinus L and S.Conclusions: Chronic low-dose radiation increases the levels of AKT and acinus proteins via NF-κB activation, and the NF-κB/AKT pathway responding to chronic low-dose irradiation plays an important role in the radiation adaptive response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.