Abstract

Secondary bile acids entrain peripheral circadian clocks and inhibit colonic motility via the bile acid receptor GPBAR1. We aimed to investigate whether chronodisruption affected the rhythm in serum bile acid levels and whether this was associated with alterations in clock gene and Gpbar1 mRNA expression in the colonic smooth muscle layer. We hypothesized that this in turn may affect the rhythm in the inhibitory effect of secondary bile acids on colonic contractility. Mice were exposed to 4 weeks of chronic jetlag induction. The expression of Gpbar1 and clock genes was measured in colonic smooth muscle tissue using RT-qPCR over 24 h (4h time interval). The effect of secondary bile acids on electrical field-induced neural contractions was measured isometrically in colonic smooth muscle strips. Chronic jetlag abolished the rhythmicity in serum bile acid levels. This was associated with a phase-shift in diurnal clock gene mRNA fluctuations in smooth muscle tissue. Chronic jetlag induced a rhythm in Gpbar1 expression in the colonic smooth muscle layer. In parallel, a rhythm was induced in the inhibitory effect of taurodeoxycholic acid (TDCA), but not deoxycholic acid, on neural colonic contractions that peaked together with Gpbar1 expression. Chronodisruption abolished the rhythm in bile acid levels which might contribute to a shift in smooth muscle clock gene expression. Our findings suggest that chronodisruption caused a transcriptional reprogramming in the colonic smooth layer thereby inducing a rhythm in the expression of Gpbar1 and in the inhibitory effect of TDCA on colonic contractility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.