Abstract
Iron is essential in oxygen transport and participates in many enzymatic systems in the body, with important roles in collagen synthesis and vitamin D metabolism. The relationship between iron and bone health comes from clinical observations in iron overload patients who suffered bone loss. The opposite scenario—whether iron deficiency, with or without anemia, affects bone metabolism—has not been fully addressed. This is of great interest, as this nutrient deficiency is a worldwide public health problem and at the same time osteoporosis and bone alterations are highly prevalent. This review presents current knowledge on nutritional iron deficiency and bone remodeling, the biomarkers to evaluate iron status and bone formation and resorption, and the link between iron and bone metabolism. Finally, it is hypothesized that chronic iron deficiency induces bone resorption and risk of osteoporosis, thus complete recovery from anemia and its prevention should be promoted in order to improve quality of life including bone health. Several mechanisms are suggested; hence, further investigation on the possible impact of chronic iron deficiency on the development of osteoporosis is needed.
Highlights
Iron is essential in oxygen transport and participates in many enzymatic systems in the body, with important roles in collagen synthesis and vitamin D metabolism
Iron status is characterized by three phases: iron depletion, iron deficiency, and iron deficiency anemia [10,26]
In the final phase, oxygen supply to tissues is impaired, which is reflected by a decrease in hemoglobin concentrations, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), serum ferritin, serum iron, and transferrin saturation [10]
Summary
Iron is the fourth most common element on earth and is a biologically essential component of every living organism [1]. 73% of the body’s iron is in the hemoglobin of circulating red cells and in the muscle protein myoglobin; 12% is in iron storage proteins, and another 15% is critically important in dozens of enzymes that are essential for the functioning of all cells and tissues [3]. Iron deficiency, even in the absence of anemia, can cause fatigue and reduce work performance [5]. It has been observed in young women that a good iron status enhances various components of wellbeing [6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.