Abstract
The ingestion of microplastics (plastic particles <5mm) has been observed in a range of marine organisms, and adverse effects have been reported in several species after high concentration exposure. However, the long-term effects of low-dose ingestion remains unclear. The aim of this study was thus to assess the chronic effects of low concentrations of polystyrene microparticles to the intertidal amphipod Echinogammarus marinus, using food consumption, growth, and moulting as endpoints. Amphipods were fed a gelatinous algal feed spiked with microbeads (8μm) in concentrations of ∼0.9, 9 and 99 microplastics/g for 35 days. E.marinus was also analysed for retention of microplastics, and egestion rate was calculated in a separate high-dose feeding experiment. No significant effects were found in the food consumption or growth assays. There was no accumulation of microplastics in the gut, with only one microbead recorded internally in three (8%) of the exposed amphipods. The low number is likely linked to gastrointestinal functions, allowing for easy egestion of indigestible items. This assumption was supported by the observation that after high-dose exposure, 60% of E.marinus egested all microbeads within 24h. This study suggests that ingesting low concentrations of 8μm microplastics do not impair the feeding or growth of amphipods along the exposure period. We hope that negative results such as these may further assist in assessing the impact posed by microplastics to marine organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.