Abstract

An efficient energy convertor capable of driving a variety of cardiac assist devices is being developed in goats. Muscle work in a linear configuration is converted to hydraulic energy and transmitted to an external test system that controls muscle loads during shortening contractions. This investigation focuses on the variation of muscle characteristics and optimal power output during muscle conditioning. The energy convertor was mounted on the rib cage, the latissimus dorsi insertion reattached to the device, and percutaneous hydraulic lines exited near the spine. Following device, stimulator, and intramuscular electrode implantation, a progressive conditioning protocol was initiated. Weekly biomechanical muscle characterization was performed in the conscious animal, with single twitch and tetanic contractions performed under isometric and isotonic conditions. The characterization data provide a measure of available power, as well as inputs, for a computer simulation that predicts optimal muscle power output and operating conditions. These ongoing implants provide insight into the available muscle power and suggest an implantable energy convertor is feasible. Development of an energy convertor is an important step toward tether free skeletal muscle powered cardiac assist. These studies will be expanded in number and duration to further investigate the effects of conditioning and identify improvements in device development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call