Abstract

The Ras-guanyl nucleotide exchange factor RasGRP1 is an important link between TCR-mediated signaling and the activation of Ras and its downstream effectors. RasGRP1 is especially critical for the survival and differentiation of developing thymocytes whereas negative selection of thymocytes bearing an autoreactive TCR appears to be RasGRP1 independent. Despite apparently normal central tolerance, RasGRP1(-/-) mice spontaneously acquire an acutely activated and proliferating CD4 T cell population that exhibits characteristics of T cell exhaustion, including strong expression of programmed cell death-1. To elucidate the basis for RasGRP1(-/-) CD4 T cell immune activation, we initiated a series of adoptive transfer experiments. Remarkably, the copious amounts of cytokines and self-Ags present in hosts made lymphopenic through irradiation failed to induce the majority of RasGRP1(-/-) CD4 T cells to enter cell cycle. However, their infusion into either congenitally T cell- or T/B cell-deficient recipients resulted in robust proliferation and L-selectin down-regulation. These findings imply that the activation and proliferation of RasGRP1(-/-) CD4 T cells may be dependent on their residence in a chronically immunocompromised environment. Accordingly, bacterial and viral challenge experiments revealed that RasGRP1(-/-) mice possess a weakened immune system, exhibiting a T cell-autonomous defect in generating pathogen-specific T cells and delayed pathogen clearance. Collectively, our study suggests that chronic T cell immunodeficiency in RasGRP1(-/-) mice may be responsible for CD4 T cell activation, proliferation, and exhaustion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.