Abstract

The dorsal periaqueductal gray matter (DPAG) has been implicated in the mediation of escape, a defensive behavior associated with panic disorder (PD). Chronic treatment with the anti-panic agent imipramine enhances the inhibitory effect on escape evoked by DPAG electrical stimulation of intra-DPAG administration of the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the preferential 5-HT 2 A receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). In the present study we further explore the hypothesis that sensitization of 5-HT1A and 5-HT 2 A receptors in the DPAG is involved in the anti-panic effect of imipramine. To this end, Wistar rats, subchronically or chronically treated with imipramine, were intra-DPAG injected with 8-OH-DPAT (0.4 or 3.2 nmoles) or DOI (16 nmoles), and tested in the elevated T-maze. In addition to its possible relevance to panic disorder, this test also measures inhibitory avoidance, a behavior that has been associated with generalized anxiety disorder (GAD). The effects of these 5-HT agonists in the DPAG were also investigated in animals chronically injected with buspirone, a drug clinically effective in treating GAD, but not PD. The results showed that intra-DPAG administration of the highest dose of 8-OH-DPAT and of DOI inhibited escape, and this panicolytic-like effect was significantly higher in animals previously treated chronically, but not subchronically, with imipramine. 8-OH-DPAT (0.4 nmole), although not affecting escape in animals systemically treated with saline, had a panicolytic-like effect in those receiving long-term treatment with imipramine. Microinjection of 8-OH-DPAT (3.2 nmoles), but not of DOI, impaired inhibitory avoidance, and this anxiolytic effect did not differ between animals treated with saline or imipramine. Chronic buspirone did not change the effect of 8-OH-DPAT and DOI on inhibitory avoidance and escape. Therefore, chronic imipramine seems to sensitize both 5-HT1A and 5-HT 2 A receptors in the DPAG, strengthening the view that these receptors are involved in the mode of action of anti-panic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call