Abstract

Catecholamine (CAT) release from chromaffin tissue plays an essential role in the fetus which develops in a low O 2 environment (hypoxia). To address molecular mechanisms regulating CAT secretion in low O 2, we exposed a fetal chromaffin-derived cell line (MAH cells) to chronic hypoxia (CHox; 2% O 2, 24 h) and assessed gene expression using microarrays, quantitative RT-PCR, and western blot. CHox caused a dramatic ∼12× upregulation of adenosine A2a receptor (A2aR) mRNA, an effect critically dependent upon hypoxia-inducible factor (HIF)-2α which bound the promoter of the A2aR gene. In amperometric studies, acute hypoxia and high K + (30 mM) evoked quantal CAT secretion that was enhanced after CHox, and further potentiated during simultaneous A2aR activation by adenosine. A2aR activation also enhanced stimulus-induced rise in intracellular Ca 2+ in control, but not HIF-2α-deficient, MAH cells. Thus, A2aR, adenosine, and HIF-2α are key contributors to the potentiation of CAT secretion in developing chromaffin cells during chronic hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.