Abstract

The present study tests the hypothesis that age-related differences in contractility of cerebral arteries from hypoxic animals involve changes in myofilament Ca2+ sensitivity. Basilar arteries from term fetal and nonpregnant adult sheep maintained 110 days at 3,820 m were used in measurements of cytosolic calcium concentration ([Ca2+]i), myosin light chain phosphorylation, and contractile tensions induced by graded concentrations of K+ or serotonin (5-HT). Slopes relating [Ca2+]i to tension were similar in fetal (0.83 +/- 0.07) and adult (1.02 +/- 0.08) arteries for K+ contractions but were significantly greater for fetal (3.77 +/- 0.64) than adult (2.00 +/- 0.13) arteries for 5-HT contractions. For both K+ and 5-HT contractions, these relations were left shifted in fetal compared with adult arteries, indicating greater Ca2+ sensitivity in fetal arteries. In contrast, slopes relating [Ca2+]i and %myosin phosphorylation for K+ contractions were less in fetal (0.37 +/- 0.08) than adult (0.81 +/- 0.07) arteries, and the fetal curves were right shifted. For 5-HT contractions, the slope of the Ca2+-phosphorylation relation was similar in fetal (0.33 +/- 0.09) and adult (0.33 +/- 0.23) arteries, indicating that 5-HT depressed Ca2+-induced myosin phosphorylation in adult arteries. For slopes relating %myosin phosphorylation and tension, fetal values (K+: 1.52 +/- 0.22, 5-HT: 7.66 +/- 1.70) were less than adult values (K+: 2.13 +/- 0.30, 5-HT: 8.29 +/- 2.40) for both K+- and 5-HT-induced contractions, although again fetal curves were left shifted relative to the adult. Thus, in hypoxia-acclimatized basilar arteries, a downregulated ability of Ca2+ to promote myosin phosphorylation is offset by an upregulated ability of phosphorylated myosin to produce force yielding an increased fetal myofilament Ca2+ sensitivity. Postnatal maturation reprioritizes the mechanisms regulating hypoxic contractility through changes in the source of activator Ca2+, the pathways governing myosin light chain phosphorylation, and its interaction with actin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.