Abstract
The carotid body (CB) plays an important role in the control of ventilation. Type I cells in CB are considered to be the chemoreceptive element which detects the levels of PO(2), PCO(2), and [H(+)] in the arterial blood. These cells originate from the neural crest and appear to retain some neuronal properties. They are excitable and produce a number of neurochemicals. Some of these neurochemicals, such as dopamine and norepinephrine, are considered to be primarily inhibitory to CB function and others, such as adenosine triphosphate, acetylcholine, and endothelin, are thought to be primarily excitatory. Chronic hypoxia (CH) induces profound morphological as well as neurochemical changes in the CB. CH enlarges the size of CB and causes hypertrophy and mitosis of type I cells. Also, CH changes the vascular structure of CB, including inducing marked vasodilation and the growth of new blood vessels. Moreover, CH upregulates certain neurochemical systems within the CB, e.g., tyrosine hydroxylase and dopaminergic activity in type I cells. There is also evidence that CH induces neurochemical changes within the innervation of the CB, e.g., nitric oxide synthase. During CH the sensitivity of the CB chemoreceptors to hypoxia is increased but the mechanisms by which the many CH-induced structural and neurochemical changes affect the sensitivity of CB to hypoxia remains to be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.