Abstract

Predicting and treating recurrence in intermediate-risk prostate cancer patients remains a challenge despite having identified genomic instability [1] and hypoxia [2, 3] as risk factors. This underlies challenges in assigning the functional impact of these risk factors to mechanisms promoting prostate cancer progression. Here we show chronic hypoxia (CH), as observed in prostate tumours [4], leads to the adoption of an androgen-independent state in prostate cancer cells. Specifically, CH results in prostate cancer cells adopting transcriptional and metabolic alterations typical of castration-resistant prostate cancer cells. These changes include the increased expression of transmembrane transporters for the methionine cycle and related pathways leading to increased abundance of metabolites and expression of enzymes related to glycolysis. Targeting of the Glucose Transporter 1 (GLUT1) identified a dependency on glycolysis in androgen-independent cells. Overall, we identified a therapeutically targetable weakness in chronic hypoxia and androgen-independent prostate cancer. These findings may offer additional strategies for treatment development against hypoxic prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.