Abstract

Cerebral blood flow (CBF) is disrupted after focal ischemia in rats. We examined long-term hemodynamic and cerebrovascular changes in the rat thalamus after focal cerebral ischemia. Cerebral blood flow quantified by arterial spin labeling magnetic resonance imaging was decreased in the ipsilateral and contralateral thalamus 2 days after cerebral ischemia. Partial thalamic CBF recovery occurred by day 7, then the ipsilateral thalamus was chronically hyperperfused at 30 days and 3 months compared with its contralateral side. This contrasted with permanent hypoperfusion in the ipsilateral cortex. Angiogenesis was indicated by endothelial cell (RECA-1) immunohistochemistry that showed increased blood vessel branching in the ipsilateral thalamus at the end of the 3-month follow-up. Only transient thalamic IgG extravasation was observed, indicating that the blood-brain barrier was intact after day 2. Angiogenesis was preceded by transiently altered expression levels of cadherin family adhesion molecules, cadherin-7, protocadherin-1, and protocadherin-17. In conclusion, thalamic pathology after focal cerebral ischemia involved long-term hemodynamic changes and angiogenesis preceded by altered expression of vascular adhesion factors. Postischemic angiogenesis in the thalamus represents a novel type of remote plasticity, which may support removal of necrotic brain tissue and aid functional recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.