Abstract

Chronic exposure to hyperoxia alters the postnatal development and innervation of the rat carotid body. We hypothesized that this plasticity is related to changes in the expression of neurotrophic factors or related proteins. Rats were reared in 60% O(2) from 24 to 36h prior to birth until studied at 3d of age (P3). Protein levels for brain-derived neurotrophic factor (BDNF) were significantly reduced (-70%) in the P3 carotid body, while protein levels for its receptor, tyrosine kinase B, and for glial cell line-derived neurotrophic factor (GDNF) were unchanged. Transcript levels in the carotid body were downregulated for the GDNF receptor Ret (-34%) and the neuropeptide Vgf (-67%), upregulated for Cbln1 (+205%), and unchanged for Fgf2; protein levels were not quantified for these genes. Immunohistochemical analysis revealed that Vgf and Cbln1 proteins are expressed within the carotid body glomus cells. These data suggest that BDNF, and perhaps other neurotrophic factors, contribute to abnormal carotid body function following perinatal hyperoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.