Abstract

Impaired function of the glutamate-nitric oxide-cGMP pathway contributes to cognitive impairment in hyperammonemia and hepatic encephalopathy. The mechanisms by which hyperammonemia impairs this pathway remain unclear. Understanding these mechanisms would allow designing clinical treatments for cognitive deficits in hepatic encephalopathy. The aims of this work were: (i) to assess whether chronic hyperammonemia in vivo alters basal activity of neuronal nitric oxide synthase (nNOS) in cerebellum and/or its activation in response to NMDA receptor activation and (ii) to analyse the molecular mechanisms by which hyperammonemia induces these alterations. It is shown that hyperammonemia reduces both basal activity of nNOS and its activation following NMDA receptor activation. Reduced basal activity is because of increased phosphorylation in Ser847 (by 69%) which reduces basal activity of nNOS by about 40%. Increased phosphorylation of nNOS in Ser847 is because of increased activity of calcium-calmodulin-dependent protein kinases (CaMKII) which in turn is because of increased phosphorylation at Thr286. Inhibiting CaMKII with KN-62 normalizes phosphorylation of Ser847 and basal NOS activity in hyperammonemic rats, returning to values similar to controls. Reduced activation of nNOS in response to NMDA receptor activation in hyperammonemia is because of altered subcellular localization of nNOS, with reduced amount in post-synaptic membranes and increased amount in the cytosol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call