Abstract

This experiment was designed to investigate the extent of peroxidative changes and histological alterations in the myocardium of rats exposed to high fluoride for two generations, in addition to ameliorative role of selenium and vitamin E on the above indices. Adult albino Wistar rats were given fluoride through drinking water (200 ppm F) and maintained subsequently for two generations, while they were exposed to fluoride throughout the experiment. Fluoride treatment significantly increased the lipid peroxidation and decreased the activity of antioxidant enzymes, viz., catalase, superoxide dismutase, and glutathione level in auricle and ventricle regions of the heart. Decreased feed and water consumption, organ somatic index and marginal drop in body growth rate were observed. Decreased antioxidant enzymes and increased malondialdehyde levels might be related to oxidative damage that occurs variably in the myocardium of rats. Biochemical changes were supported by the histological observations, which also revealed that chronic exposure to fluoride causes damage to the myocardium. Results of this study can be taken as an index of cardio-toxicity in rats exposed to water fluoridation. Further, oral supplementation of selenium and vitamin E not only inhibited oxidative stress but also enhanced the activities of antioxidant enzymes. Administration of antioxidants during fluoride exposure significantly overcame cardiac fluoride toxicity and therefore may be a therapeutic strategy for fluorotic victims.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.