Abstract

Growth-restricted fetuses have attenuated glucose-stimulated insulin secretion (GSIS), smaller pancreatic islets, less pancreatic β-cells, and less pancreatic vascularization compared with normally growing fetuses. Infusion of leucine into normal late-gestation fetal sheep potentiates GSIS, as well as increases pancreatic islet size, the proportion of the pancreas and islet comprising β-cells, and pancreatic and islet vascularity. In addition, leucine stimulates hepatocyte growth factor (HGF ) mRNA expression in islet endothelial cells isolated from normal fetal sheep. We hypothesized that a 9-d leucine infusion would potentiate GSIS and increase pancreatic islet size, β-cells, and vascularity in intrauterine fetal growth restriction (IUGR) fetal sheep. We also hypothesized that leucine would stimulate HGF mRNA in islet endothelial cells isolated from IUGR fetal sheep. Late-gestation Columbia-Rambouillet IUGR fetal sheep (singleton or twin) underwent surgeries to place vascular sampling and infusion catheters. Fetuses were randomly allocated to receive a 9-d leucine infusion to achieve a 50-100% increase in leucine concentrations or a control saline infusion. GSIS was measured and pancreas tissue was processed for histologic analysis. Pancreatic islet endothelial cells were isolated from IUGR fetal sheep and incubated with supplemental leucine. Data were analyzed by mixed-models ANOVA; Student, Mann-Whitney, or a paired t test; or a test of equality of proportions. Chronic leucine infusion in IUGR fetuses did not affect GSIS, islet size, the proportion of the pancreas comprising β-cells, or pancreatic or pancreatic islet vascularity. In isolated islet endothelial cells from IUGR fetuses, HGF mRNA expression was not affected by supplemental leucine. IUGR fetal sheep islets are not responsive to a 9-d leucine infusion with respect to insulin secretion or any histologic features measured. This is in contrast to the response in normally growing fetuses. These results are important when considering nutritional strategies to prevent the adverse islet and β-cell consequences in IUGR fetuses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call