Abstract

The purpose of this study was to investigate the impact of chronic hypoxia on the nitric oxide synthase isoenzymes in specific brain structures. Time-mated pregnant guinea pigs were exposed to 10.5% molecular oxygen for 14 days (animals with chronic fetal hypoxia; HPX) or room air (control animals; NMX); L-N6-(1-iminoethyl)-lysine (L-NIL; an inducible nitric oxide synthase inhibitor, 1 mg/kg/d) was administered to HPX group for 14 days (L-NIL + HPX). Fetal brains were harvested at term. Multilabeled immunofluorescence was used to generate a brain injury map. Laser capture microdissection and quantitative polymerase chain reaction were applied; cell injury markers, apoptosis activation, neuron loss, total nitric oxide, and the levels of individual nitric oxide synthase isoenzymes were quantified. Chronic hypoxia causes selective fetal brain injury rather than global. Injury is associated with differentially affected nitric oxide synthases in both neurons and glial cells, with inducible macrophage-type nitric oxide synthase up-regulated at all injury sites. L-NIL attenuated the injury, despite continued hypoxia. These studies demonstrate that chronic hypoxia selectively injures the fetal brain in part by the differential regulation of nitric oxide synthase isoenzymes in an anatomic- and cell-specific manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.