Abstract
In the past decade, mycotoxin zearalenone (ZEN)-induced gastrointestinal adverse effects have been increasingly attracting worldwide attention. This study aimed to determine the gastrointestinal adverse effects of ZEN in Drosophila melanogaster (D. melanogaster) and reveal possible mechanisms of action of ZEN in insects. Here, chronic exposure of D. melanogaster to ZEN killed flies in a dose-dependent manner (2–20 µM). ZEN (20 µM) decreased the survival rates and climbing ability of flies, and activated immune deficiency-mediated intestinal immunity in midgut, leading to the production of antimicrobial peptides. Meanwhile, ZEN exposure induced morphological alteration of adult midgut. Further study suggested that high levels of oxidative stress was observed in ZEN-treated midgut due to the imbalance between the production of reactive oxygen species and the expression and activities of cellular antioxidant enzyme, including superoxide dismutase and catalase. ZEN-induced oxidative stress then caused cell death, impaired gut barrier function and increased gut permeability, leading to oxidative injury in midgut. Subsequently, ZEN-induce midgut injury further disrupted intestinal stem cell (ISC) homeostasis, stimulating ISC proliferation and tissue regeneration, but did not alter cell fate specification of ISC. Additionally, activation of Jun N-terminal kinase pathway was involved in ZEN-induced oxidative injury and tissue regeneration in midgut. Antioxidant vitamin E alleviated ZEN-induced oxidative injury to midgut epithelium. Collectively, this study provided additional evidences for ZEN-induced gastrointestinal adverse effects from an invertebrate model, extended our understanding of the mechanisms mediating mycotoxin toxicity in organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.