Abstract

Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degeneratedneurons, degenerated purkinje cellsand binucleate. Furthermore, TCEP exposure leads tosignificant changesin dopamine and 5-HT levelsin thebrainof zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call