Abstract

Previous studies have suggested that a γ-amino-butyric acid (GABA) deficit in the caudal hypothalamus (CH) of the spontaneously hypertensive rat (SHR) contributes to elevated levels of arterial pressure. The purpose of this study was to examine if SHR that underwent exercise training demonstrated a blunted development of hypertension and greater levels of glutamic acid decarboxylase (GAD) mRNA transcripts in the caudal hypothalamus. SHR were randomly paired and assigned to either a trained group (T; n=9) or a non-trained control group (NT; n=9). Trained animals were exercised for 10 weeks on a motorized treadmill while NT animals concurrently rested on a mock-treadmill. Following the 10-week training period, Northern blot analyses of mRNA for both the 65-kDa (GAD 65) and 67-kDa (GAD 67) isoforms of GAD were performed on tissue from caudal hypothalamic and cerebellar control brain regions. Exercise training simultaneously blunted the developmental rise in blood pressure in SHR (Δ59±9 mmHg in trained versus Δ77±9 mmHg in non-trained; P<0.03) and increased both GAD 65 (147±44%) and GAD 67 (162±77%) mRNA transcript levels in the CH ( P<0.05). In contrast, no difference was detected in GAD mRNA levels in the cerebellum between T and NT SHR. These findings are consistent with our previous functional studies and demonstrate that exercise can significantly and specifically upregulate GAD gene transcript levels in the caudal hypothalamus of hypertensive rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.