Abstract

BackgroundEthanol use is related to a wide variety of negative health outcomes, including cardiovascular diseases. Stress is also involved in numerous pathologies, such as cardiovascular diseases and psychiatric disorders. Sexual dimorphism is an important factor affecting cardiovascular response and has been proposed as a potential risk factor for sex-specific health problems in humans. Here, we evaluated the effect of prolonged ethanol vapor inhalation on arterial pressure, heart rate, and tail skin temperature responses to acute restraint stress, investigating differences between male and female rats.MethodsWe exposed male and female Long-Evans rats to ethanol vapor for 14 h, followed by ethanol withdrawal for 10 h, for 30 consecutive days, or to room air (control groups). The animals underwent surgical implantation of a cannula into the femoral artery for assessment of arterial pressure and heart rate values. The tail skin temperature was measured as an indirect measurement of sympathetic vasomotor response.ResultsChronic ethanol vapor inhalation reduced basal heart rate in both female and male rats. Sex-related difference was observed in the decrease of tail cutaneous temperature evoked by stress, but not in the pressor and tachycardiac responses. Furthermore, prolonged ethanol inhalation enhanced the blood pressure and heart rate increase caused by acute restraint stress in male, but not in female rats. However, no effect of chronic ethanol vapor was observed in the tail cutaneous temperature response to restraint in either sex.ConclusionChronic ethanol vapor exposure increased the cardiovascular reactivity to stress in male, but not in female rats.

Highlights

  • Ethanol use is related to a wide variety of negative health outcomes, including cardiovascular diseases

  • Analysis of Mean arterial pressure (MAP) indicated no significant effect for sex (F (1, 27) = 1.12, p > 0.05), vapor (F (1, 27) = 0.21, p > 0.05), or interaction between factors (F (1, 27) = 0.06, p > 0.05) (Fig. 2a)

  • The analysis of basal parameters showed that alcohol vapor exposure decreased heart rate (HR) in females and males, when compared to control groups, with no alteration of MAP and tail skin temperature

Read more

Summary

Introduction

Ethanol use is related to a wide variety of negative health outcomes, including cardiovascular diseases. Restraint is one of the most commonly employed stressors to investigate stress-evoked behavioral and physiological changes in laboratory animals [12,13,14]. This model is characterized by unconditioned and unavoidable stress-elicited neuroendocrine and cardiovascular responses, the latter being characterized by sustained blood pressure and heart rate (HR) increases that last throughout the restraint period [10, 15, 16]. Cutaneous vasoconstriction during restraint leads to a fall in the tail skin temperature [17,18,19]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call