Abstract

Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70mM) for 8days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call