Abstract
Results of previous studies have shown that chronic ethanol administration impairs methionine synthetase activity and decreases S-adenosylmethionine levels in the liver, indicating interference with homocysteine remethylation. The purpose of the present study was to investigate the effects of chronic ethanol feeding on the accumulation of homocysteine (Hcy), a potentially toxic agent. The research was divided into two experiments. In Experiment A, hepatocytes were isolated from pair-fed control and ethanol-fed rats after 2 weeks of feeding, and the release of Hcy into the medium was determined. Hepatocytes obtained from ethanol-fed rats released twice as much Hcy into the medium as did those obtained from controls. When hepatocytes were challenged by a methionine load, a marked increase in Hcy generation was observed, and the increase was further enhanced in hepatocytes obtained from ethanol-fed rats. In Experiment B, hepatocytes were isolated from pair-fed control and ethanol-fed rats after 4 weeks of feeding (the feeding time required for significant formation of alcoholic fatty liver in rats). In this experiment, similar results were obtained with Hcy generation as in Experiment A. In Experiment B, supplementation of the incubation medium with betaine prevented the increase in generation of Hcy by methionine-treated control cells as well as the generation of Hcy by cells of ethanol-treated rats. These results indicate that betaine may have the potential as a therapeutic agent against toxic Hcy formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.