Abstract

In experiments on narcotized male rats (n=85), the mean electroimpedance Z and peak-to-peak magnitudes (the swing ranges) of passive (ΔZp) and active (ΔZa) pulsatile electroimpedance oscillations of isolated segment of femoral arteries were determined in situ. These rheographic parameters (RP) were measured in intact animals and in those with modeled chronic myocardial infarction, chronic denervation of the right hind leg, as well as in rats subjected to sham operations to mimic denervation or infarction (with thoracic trauma). The rats with modeled myocardial infarction demonstrated decreasing trends of all RP. In sham-operated rats with thoracic trauma, ΔZp increased significantly on postsurgery months 2-4 by 4.3 times in comparison with the control. No essential correlation was found in denervated rats between RP of any femoral artery and severity of neuropathic pain syndrome assessed by autotomy of the operated leg. In these rats, the mean electroimpedance Z of any femoral artery was significantly greater than the control level. They demonstrated especially high values of ΔZp with significant difference between ΔZp of innervated and denervated hind leg. In denervated rats, ΔZa was significantly greater than the control value without significant difference between ΔZa of both femoral arteries. The paradoxically great increase of ΔZp (100- and 50-fold for innervated and denervated legs, respectively) and a significant 3-fold increment of ΔZa in both hind legs provoked by denervation of one of them are discussed in relation to searching for the ways of systemic influences on vascular network in clinics and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call