Abstract

Abstract Objectives Elevated circulating branched-chain amino acids (BCAAs) during insulin resistance are strong predictors of type 2 diabetes mellitus onset. Defects in BCAA degradation are evident in several tissues during insulin resistance and non-alcoholic fatty liver disease (NAFLD). Furthermore, alterations in BCAA metabolism are associated with changes in several aspects lipid metabolism, including lipogenesis, ketogenesis and mitochondrial TCA cycle activity. Considering the crosstalk between BCAAs and lipid metabolism, we hypothesized that chronic supplementation of BCAAs will modulate hepatic insulin resistance and mitochondrial lipid oxidation during NAFLD. Methods Mice (C57BL/6N) were reared on either a low-fat (LF; 10% fat kcal), high-fat (HF; 60% fat kcal or high-fat diet supplemented with BCAA (HFBA; 150% BCAA) for 24 weeks. Metabolic profiling was conducted under fed or overnight fasted (14–16 hrs) conditions. A subset of overnight fasted mice from the HF and HFBA groups were subjected to hyperinsulinemic euglycemic clamps, following implantation of jugular vein catheters. Results Feeding HF and HFBA diets resulted in NAFLD. Circulating BCAAs were higher in ‘fed’ mice consuming HFBA diet (e.g., Valine, µM ± SEM; 311 ± 38 in HF, 432 ± 34 in HFBA, P ≤ 0.05). Overnight fasting significantly reduced BCAA levels in all groups, but the fasting levels of BCAAs remained similar between groups. Fed-to-fasted fold changes in blood glucose, serum insulin and c-peptide were higher in HFBA mice (P ≤ 0.05). Insulin stimulated suppression of glucose production (% ± SEM; HF = 38 ± 11, HFBA = 16 ± 16) was blunted in HFBA mice. Furthermore, fed-to-fasted expression of hepatic genes involved in lipid oxidation, including LCAD, MCAD, PPARa and CPT1a were significantly higher (P ≤ 0.05) in the HFBA mice. Conclusions In summary, chronic BCAA supplementation induced hepatic lipid oxidation gene expression, without any apparent improvements in insulin sensitivity. In conclusion, while the induction of lipid oxidation by BCAAs could explain certain beneficial effects associated with their supplementation, the longer-term impact of the BCAAs on insulin sensitivity need to be further explored. Funding Sources National Institutes of Health (NIH) grant RO1-DK-112865

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call