Abstract

The effects of long-term administration of the tricyclic antidepressant agent desipramine on the hypnotic, antinociceptive, anesthetic-sparing, and central norepinephrine turnover suppressant action of short-term dexmedetomidine, a highly selective alpha2-adrenergic agonist, were studied in rats. Rats were given a 3- or 4-week course of twice daily administration of desipramine, 10 mg/kg, or saline. The effect of a hypnotic dose of dexmedetomidine, 250 microg/kg given intraperitoneally, on the duration of loss of righting reflex was determined. The tail flick latency response was determined before and after 50 microg/kg dexmedetomidine. The minimum anesthetic concentration of halothane and the central norepinephrine turnover rate were determined before and after administration of 30 microg/kg dexmedetomidine. Changes in the affinity and density of the alpha2-adrenergic receptor in locus coeruleus and spinal cord also were determined. Treatment with desipramine decreased dexmedetomidine-induced loss of righting reflex duration by 67% and eliminated the antinociceptive effect of dexmedetomidine. Dexmedetomidine produced a 55% decrease in minimum anesthetic concentration in the control group but no reduction in desipramine-treated rats. Desipramine did not change the receptor density or binding affinity of alpha2 receptors at the site for hypnotic (locus coeruleus) or antinociceptive (spinal cord) responses. No decrement in the central norepinephrine turnover rate was noted in the locus coeruleus of dexmedetomidine after 3 weeks of treatment with desipramine. The alpha1-adrenergic antagonist prazosin at 1 or 5 mg/kg completely (minimum anesthetic concentration reduction), almost completely (antinociceptive), or partially (hypnotic) restored responsiveness to normal. These data indicate that treatment with desipramine induces hyporesponsiveness to the hypnotic, analgesic, and minimum anesthetic concentration-reducing, but not to the suppression of central norepinephrine turnover, properties of dexmedetomidine. The hyporesponsiveness appears to involve an alpha1-adrenergic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.