Abstract

Selective serotonin (5-HT) reuptake inhibitors are only 30% effective for remission in subjects with major depression, and the best treatments for SSRI-resistant patients remain unclear. To model SSRI resistance, we used cF1ko mice with conditional deletion of the repressor Freud-1/CC2D1A in adult 5-HT neurons. Within weeks, this deletion leads to overexpression of 5-HT1A autoreceptors, reduced serotonergic activity, and fluoxetine-resistant anxiety-depression phenotype. We hypothesized that desipramine (DES), which targets norepinephrine (NE), may be effective in cF1ko mice. The actions of chronic DES treatment on behavior, chronic cellular activation, and NE projections were examined in both sexes of cF1ko and WT mice. In contrast to fluoxetine, chronic DES reversed the behavioral phenotypes in cF1ko mice, while in WT littermates DES slightly increased anxiety and depression-like behaviors. Deficits in FosB+ cell counts were seen in the entorhinal cortex, hippocampal CA2/3 layer, and BLA of cF1ko mice and were reversed by chronic DES treatment, especially in GABAergic neurons. In cF1ko mice, widespread reductions were seen in NE axons, varicosities, and especially 30-60% reductions in NE synaptic and triadic contacts, particularly to inhibitory gephyrin-positive sites. DES treatment also reversed these reductions in NE innervation. These results indicate the dynamic plasticity of the adult noradrenergic system within weeks of altering serotonergic function that can be normalized by DES treatment. Accompanying these changes, DES but not fluoxetine reversed the behavioral alterations in cF1ko mice, suggesting a key role for noradrenergic plasticity in antidepressant response in this model of reduced serotonin activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call