Abstract

The pathologies of many diseases are influenced by environmental temperature. As early as the classical Roman age, people believed that exposure to cold weather was bad for rheumatoid arthritis (RA). However, there is no direct evidence supporting this notion, and the molecular mechanisms of the effects of chronic cold exposure on RA remain unknown. Here, in a temperature-conditioned environment, we found that chronic cold exposure aggravates collagen-induced arthritis (CIA) by increasing ankle swelling, bone erosion, and cytokine levels in rats. Furthermore, in chronic cold-exposed CIA rats, gut microbiota dysbiosis was identified, including a decrease in the differential relative abundance of the families Lachnospiraceae and Ruminococcaceae. We also found that an antibiotic cocktail suppressed arthritis severity under cold conditions. Notably, the fecal microbiota transplantation (FMT) results showed that transplantation of cold-adapted microbiota partly recapitulated the microbiota signature in the respective donor rats and phenocopied the cold-induced effects on CIA rats. In addition, cold exposure disturbed bile acid profiles, in particular decreasing gut microbiota-derived taurohyodeoxycholic acid (THDCA) levels. The perturbation of bile acids was also associated with activation of the TGR5-cAMP-PKA axis and NLRP3 inflammasome. Oral THDCA supplementation mitigated the arthritis exacerbation induced by chronic cold exposure. Our findings identify an important role of aberrant gut microbiota-derived bile acids in cold exposure-related RA, highlighting potential opportunities to treat cold-related RA by manipulating the gut microbiota and/or supplementing with THDCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call