Abstract

The effect of chronic cocaine administration on norepinephrine stimulated hydrolysis of inositol 1,4,5-trisphosphate from the membrane phosphatidylinositol phosphate pool in isolated rat aorta was investigated. Rats received saline (controls), or 10 or 20 mg/kg cocaine once a day for 15 days. This treatment resulted in a dose-dependent reduction in norepinephrine (0.36 μM) stimulated phosphoinositide hydrolysis. The effect of acute cocaine was determined by adding 30 μM cocaine to the in vitro incubation solution. When aortas were exposed to cocaine and norepinephrine simultaneously, in vitro, inositol phosphate formation doubled. By itself, cocaine did not affect phosphoinositide hydrolysis. Contraction of aortic helical strips by norepinephrine decreased in tissues from rats chronically treated with 20 mg/kg cocaine. In vitro cocaine shifted the norepinephrine concentration/response curve to the left and increased the maximum response. Neither acute nor chronic cocaine treatment affected prazosin's apparent dissociation constant, suggesting that cocaine did not affect receptor affinity. These data suggest that chronic, but not acute cocaine administration may interfere with pharmacomechanical coupling in rat aorta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call