Abstract

With the rapid development of deep learning, automatic image recognition is widely used in medical development. In this study, a deep learning convolutional neural network model was developed to recognize and classify chronic cervicitis and cervical cancer. A total of 10,012 colposcopy images of 1,081 patients from Hunan Provincial People’s Hospital in China were recorded. Five different colposcopy image features of the cervix including chronic cervicitis, intraepithelial lesions, cancer, polypus, and free hyperplastic squamous epithelial tissue were extracted to be applied in our deep learning network convolutional neural network model. However, the result showed a low accuracy (42.16%) due to computer misrecognition of chronic cervicitis, intraepithelial lesions, and free hyperplastic squamous epithelial tissue with high similarity. To optimize this model, we selected two significant feature images: chronic cervicitis and cervical cancer to input into a deep learning network. The result indicates high accuracy and robustness with an accuracy of 95.19%, which can be applied to detect whether the patient has chronic cervicitis or cervical cancer based on the patient’s colposcopy images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.