Abstract

Although acute leptin administration in the hypothalamus decreases food intake and increases peripheral energy metabolism, the peripheral actions of central chronic leptin administration are less understood. In this study, we investigated what effects chronic (7 d) intracerebroventricular (ICV) administration of leptin has on energy metabolism and insulin sensitivity in diet-induced obese mice. C57/BL mice were fed a low-fat diet (LFD; 10% total calories) or high-fat diet (HFD; 60% total calories) for 8 wk after which leptin was administered ICV for 7 consecutive days. Mice fed a HFD showed signs of insulin resistance, as evidenced by an impaired glucose tolerance test. Chronic leptin treatment resulted in a decrease in food intake and body weight and normalization of glucose clearance but no improvement in insulin sensitivity. Chronic ICV leptin increased hypothalamic signal transducer and activator of transcription-3 and AMP-activated protein kinase phosphorylation but did not change hypothalamic malonyl CoA levels in HFD fed and LFD-fed mice. In the gastrocnemius muscles, the levels of malonyl CoA in both leptin-treated groups were lower than their respective control groups, suggesting an increase in fatty acid oxidation. However, only in the muscles of ICV leptin-treated LFD mice was there a decrease in lipid metabolites including diacylglycerol, triacylglycerol, and ceramide. Our results suggest that chronic ICV leptin decreases food consumption and body weight via a mechanism different from acute ICV leptin administration. Although chronic ICV leptin treatment in HFD mice improves glucose tolerance, this occurs independent of changes in insulin sensitivity in the muscles of HFD mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.