Abstract

Although alterations in adenylate cyclase (AC) activity and somatostatin (SRIF) receptor density have been reported in Alzheimer's disease, the effects of amyloid beta-peptide (Abeta) on these parameters in the hippocampus are unknown. Our aim was to investigate whether the peptide fragment Abeta(25-35) can affect the somatostatinergic system in the rat hippocampus. Hence, Abeta(25-35) was injected intracerebroventricularly (i.c.v.) to Wistar rats in a single dose or infused via an osmotic minipump connected to a cannula implanted in the right lateral ventricle during 14 days. The animals were decapitated 7 or 14 days after the single injection and 14 days after chronic infusion of the peptide. Chronic i.c.v. infusion of Abeta(25-35) decreased SRIF-like immunoreactive content without modifying the SRIF receptor density, SRIF receptor expression, or the Gialpha(1), Gialpha(2), and Gialpha(3) protein levels in the hippocampus. This treatment, however, caused a decrease in basal and forskolin-stimulated AC activity as well as in the capacity of SRIF to inhibit AC activity. Furthermore, the protein levels of the neural-specific AC type I were significantly decreased in the hippocampus of the treated rats, whereas an increase in the levels of AC V/VI was found, with no alterations in type VIII AC. A single i.c.v. dose of Abeta(25-35) exerted no effect on SRIF content or SRIF receptors but induced a slight decrease in forskolin-stimulated AC activity and its inhibition by SRIF. Because chronic Abeta(25-35) infusion impairs learning and memory whereas SRIF facilitates these functions, the alterations described here might be physiologically important given the decreased cognitive behavior previously reported in Abeta-treated rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call