Abstract

The purpose of this study was to determine whether chronic blockade of the angiotensin II (ANG II) AT1 receptor under normal physiological conditions impairs vascular relaxation mechanisms in isolated middle cerebral arteries (MCA). Male Sprague-Dawley rats on a standard diet were given losartan (1 mg/mL) in the drinking water or normal water ad libitum for 7 days. Vessel diameters were measured by television microscopy before and during exposure to various vasodilator agonists and reductions in PO2 from 140 mm Hg to 35-45 mm Hg. Dilations to acetylcholine (1 microM), the stable prostacyclin analogue iloprost (10 pg/mL), and the Gs protein activator cholera toxin (1 ng/mL) were completely eliminated in vessels from losartan-treated animals. However, middle cerebral arteries from control and losartan-treated rats still demonstrated significant dilations in response to reduced PO2. Hypoxic dilation of middle cerebral arteries from control rats was eliminated by indomethacin (1 microM) and unaffected by the NOS inhibitor L-NAME (100 microM) whereas dilation in response to reduced PO2 in middle cerebral arteries from losartan-treated rats was eliminated by L-NAME and unaffected by indomethacin. Middle cerebral arteries from control and losartan-treated animals exhibited similar dilations in response to the NO-donor sodium nitroprusside (1 microM). These data suggest that AT1 receptor activation is important in maintaining normal vascular relaxation mechanisms in cerebral resistance arteries during normal physiological conditions, and that AT1 receptor blockade causes a shift in the mechanisms of hypoxic dilation of middle cerebral arteries from cyclooxygenase metabolites to NO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.