Abstract
Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Hypertension
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.