Abstract

It is still difficult to define the biochemical mechanisms that cause alterations in neuronal function and plasticity and neuronal cell loss in the brains of alcohol-dependent patients. To evaluate the extent of cerebral alcohol-induced oxidative stress ex vivo, we investigated the levels of glutathione (GSH), its oxidation product glutathione disulfide (GSSG, produced by GSH-peroxidases), and the activities of catalase and superoxide dismutases (SOD). In addition, selected brain regions from up to 22 subjects (versus controls) were studied post mortem to compare the amount of oxidized DNA-base 8-hydroxy-2'-deoxyguanosine (8-OHdG) with levels of deoxyguanosine (dG) in mitochondrial and nuclear DNA. The most prominent findings showed significantly decreased GSH/(GSH+2GSSG) molar redox (oxidation-reduction) ratios in the corpus mamillare and cerebellum, which appeared due to an increase in GSSG caused by chronic alcohol intake. Catalase activity was increased in only the frontal cortex, whereas decreased catalase activity was found in the corpus callosum. In contrast, neither copper-zinc-superoxide dismutase (CuZnSOD) and manganese-superoxide dismutase (MnSOD) activities nor 8-OHdG/dG molar ratios were altered, although a tendency toward higher OHdG/dG ratios in temporal and parietal cortex from alcohol-dependent patients could be detected when mitochondrial DNA was analyzed selectively. We propose that decreased brain GSH/(GSH+2GSSG) molar redox (oxidation-reduction) ratios in alcohol-dependent patients may reflect neural impairment due to increased peroxide production after chronic alcohol consumption. However, future experiments, investigating the activities of enzymes and cofactors involved in GSH synthesis and metabolism in the human brain, will have to validate the specificity of these results for oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.