Abstract

We determined the cardiovascular effects of chronic beta2-adrenoceptor (beta2-AR) stimulation in vivo and examined the mechanism for the previously observed prolonged diastolic relaxation. Rats (3 mo old; n = 6), instrumented with implantable radiotelemeters, received the selective beta2-AR agonist formoterol (25 microg.kg(-1).day(-1) ip) for 4 wk, with selected cardiovascular parameters measured daily throughout this period, and for a further 7 days after cessation of treatment. Chronic beta2-AR stimulation was associated with an increase in heart rate (HR) of 17% (days 1-14) and 5% (days 15-28); a 11% (days 1-14) and 6% (days 15-28) decrease in mean arterial blood pressure; and a 24% (days 1-14) increase in the rate of cardiac relaxation (-dP/dt) compared with initial values (P < 0.05). Cessation of beta2-AR stimulation resulted in an 8% decrease in HR and a 7% decrease in -dP/dt, compared with initial values (P < 0.05). The prolonged cardiac relaxation with chronic beta2-AR stimulation was associated with a 30% decrease in the maximal rate (Vmax) of sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) activity, likely attributed to a 50% decrease in SERCA2a protein (P < 0.05). glycogen synthase kinase-3beta (GSK-3beta) has been implicated as a negative regulator of SERCA2 gene transcription, and we observed a approximately 60% decrease (P < 0.05) in phosphorylated GSK-3beta protein after chronic beta2-AR stimulation. Finally, we found a 40% decrease (P < 0.05) in the mRNA expression of the novel A kinase anchoring protein AKAP18, also implicated in beta2-AR-mediated cardiac relaxation. These findings highlight some detrimental cardiovascular effects of chronic beta2-AR agonist administration and identify concerns for their current and future use for treating asthma or for conditions where muscle wasting and weakness are indicated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call