Abstract
Chromothripsis is a unique form of genome instability characterized by tens to hundreds of DNA double-strand breaks on one or very few chromosomes, followed by error-prone repair. The derivative chromosome(s) display massive rearrangements, which lead to the loss of tumor suppressor function and to the activation of oncogenes. Chromothripsis plays a major role in cancer as well as in other conditions, such as congenital diseases. In this review, we discuss the repair processes involved in the rejoining of the chromosome fragments, the role of DNA repair and checkpoint defects as a cause for chromothripsis as well as DNA repair defects resulting from chromothripsis. Finally, we consider clinical implications and potential therapeutic vulnerabilities that could be utilized to eliminate tumor cells with chromothripsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.