Abstract

We explore the dynamics of chromospheric condensations driven by evaporation during the impulsive phase of solar flares. Specifically, we find that the maximum chromospheric downflow speed obeys the approximate relation υd= 0.4 (F/ϱch)1/3, where F is that part of the flare energy flux driving chromospheric evaporation, and ϱch is the mass density in the preflare chromosphere just below the preflare transition region. This implies that chromospheric downflows as measured by Hα asymmetries may be a powerful probe of flare energetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.