Abstract

Chromospheric activity has been calibrated and widely used as an age indicator. However, it has been suggested that the viability of this age indicator is, in the best case, limited to stars younger than about 1.5 Gyr. I aim to define the age range for which chromospheric activity is a robust astrophysical clock. I collected literature measurements of the S-index in field stars, which is a measure of the strength of the H and K lines of the Ca II and a proxy for chromospheric activity, and exploited the homogeneous database of temperature and age determinations for field stars provided by the Geneva-Copenhagen survey of the solar neighbourhood. Field data, inclusive data previously used to calibrate chromospheric ages, confirm the result found using open cluster data, i.e. there is no decay of chromospheric activity after about 2 Gyr. The only existing indication supporting the viability of chromospheric ages older than 2 Gyr is the similarity of chromospheric activity levels in the components of 35 dwarf binaries. However, even in the most optimistic scenario, uncertainty in age determination for field stars and lack of sufficient data in open clusters make any attempt of calibrating an age activity relationship for old stars premature. The hypothesis that chromospheric activity follows the Skumanich law, i.e. that it is proportional to the inverse square root of the age, should be relaxed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.