Abstract
A high-quality genome assembly is imperative to explore the evolutionary basis of characteristic attributes that define chemotype and provide essential resources for a molecular breeding strategy for enhanced production of medicinal metabolites. Here, using single-molecule high-fidelity (HiFi) sequencing reads, we report chromosome-scale genome assembly for Chinese licorice (Glycyrrhiza uralensis), a widely used herbal and natural medicine. The entire genome assembly was achieved in eight chromosomes, with contig and scaffold N50 as 36.02 and 60.2 Mb, respectively. With only 17 assembly gaps and half of the chromosomes having no or one assembly gap, the presented genome assembly is among the best plant genomes to date. Our results showed an advantage of using highly accurate long-read HiFi sequencing data for assembling a highly heterozygous genome including its complexed repeat content. Additionally, our analysis revealed that G. uralensis experienced a recent whole-genome duplication at approximately 59.02 million years ago post a gamma (γ) whole-genome triplication event, which contributed to its present chemotype features. The metabolic gene cluster analysis identified 355 gene clusters, which included the entire biosynthesis pathway of glycyrrhizin. The genome assembly and its annotations provide an essential resource for licorice improvement through molecular breeding and the discovery of valuable genes for engineering bioactive components and understanding the evolution of specialized metabolites biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.