Abstract

Repeated triple-color fluorescence in situ hybridization was used for the detection of exchange aberrations among 10 selected chromosomes of human lymphocytes irradiated with three doses of fast neutrons with a mean energy of 7 MeV. In each hybridization two different pairs of chromosomes were stained. Defined stage positions of metaphases on a slide were stored on a hard disk and an automatic scan of images according to these positions was performed after six successive hybridizations. In this way we obtained six different images of the same metaphase with differently stained pairs of chromosomes and centromeres. The comparison of these images enabled the identification of mutual exchanges between chromosomes 1, 2, 3, 4, 8, 9, 12, 14, 18 and 22. The frequencies of exchanges were not linearly proportional to the molecular weight of interacting chromosomes. The most significant were exchanges between chromosomes 14/18, 14/8, 18/8, 8/3, 1/14, 1/8, 3/18, 3/14 and 9/22. The results indicate significant interactions between chromosomes involved in translocations in B-cell non-Hodgkin's lymphoma and chronic myeloid leukemia. We propose that the reason for the high frequency of exchanges between these chromosomes is their proximity in the cell nucleus. It may also be one of the reasons for the induction of specific translocations leading to malignant transformation of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call