Abstract

Numerous cellular and molecular perturbations have been studied to elucidate the pathogenic mechanisms underlying nephrotic-range proteinuria, which may in turn shed light on disease-specific mechanisms. We have analyzed the publicly available data from the PhysGen partial panel of consomic rats to determine whether there are quantitative trait loci that associate with nephrotic-range proteinuria. As of this writing, consomic rat strains subjected to the renal protocol have been bred by the Program for Genomic Applications for 15 of the 22 rat chromosomes for both genders, predominantly with the Brown-Norway (BN) and Dahl salt-sensitive (SS) strains as parents. We defined chromosomes of interest as consomic SS-xBN strains whose phenotype measurements differed significantly from SS but not BN strains, stratified by gender. We filtered and clustered differentially expressed genes by function in renal tissue from relevant strains. Proteinuria was significantly higher in male SS vs. male SS-18BN, and it was significantly higher in male SS vs. female SS. Functional clustering of differentially expressed genes yielded two specific functional clusters: apoptosis (p=0.022) and angiogenesis (p=0.046). Gene expression profiles demonstrated differential expression of apoptotic and angiogenic genes. However, TUNEL stains of renal tissue showed no significant difference in the number of apoptotic nuclei. We conclude that chromosomes 18 and X are quantitative trait loci for nephrotic-range proteinuria in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.