Abstract

The oriental fruit fly, Bactrocera dorsalis (Hendel), has very strong ecological adaptability and phenotypic plasticity. Here, the genome of B. dorsalis was assembled into 549.45 Mb sequences with a contig N50 length of 12.81 Mb. Among, 95.67 % assembled genome sequences were anchored on six chromosomes with an N50 length of 94.63 Mb. According to the basic characteristics of the sex chromosomes of Tephritidae, the X chromosome of B. dorsalis was identified. Significant gene expansions were detected in several important gene families related to adaptability. In particular, we annotated 50 histone modification enzymes (HMEs) in this genome. A comparative transcriptome analysis indicated that 12 HME genes were differentially expressed in two thermo-tolerant strains (heat and cold). Interestingly, four and seven of the 12 HME genes responded to heat shock or cold hardening, respectively. These evidences suggested that the histone modification as an epigenetic modification may be involved in the thermal tolerance of B. dorsalis, but with different regulation mechanisms in thermal acclimation and hardening. The high quality genome of B. dorsalis provides an invaluable resource for further functional genomic study. Moreover, comparative genomic analysis will shed insights on revealing the mechanisms of adaptive evolution in this fly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.