Abstract
BackgroundDinobdella ferox is the most frequently reported leech species parasitizing the mammalian nasal cavity. However, the molecular mechanism of this special parasitic behavior has remained largely unknown.MethodsPacBio long-read sequencing, next-generation sequencing (NGS), and Hi-C sequencing were employed in this study to generate a novel genome of D. ferox, which was annotated with strong certainty using bioinformatics methods. The phylogenetic and genomic alterations of D. ferox were then studied extensively alongside the genomes of other closely related species. The obligatory parasitism mechanism of D. ferox was investigated using RNA-seq and proteomics data.ResultsPacBio long-read sequencing and NGS yielded an assembly of 228 Mb and contig N50 of 2.16 Mb. Along Hi-C sequencing, 96% of the sequences were anchored to nine linkage groups and a high-quality chromosome-level genome was generated. The completed genome included 19,242 protein-coding genes. For elucidating the molecular mechanism of nasal parasitism, transcriptome data were acquired from the digestive tract and front/rear ends of D. ferox. Examining secretory proteins in D. ferox saliva helped to identify intimate connections between these proteins and membrane proteins in nasal epithelial cells. These interacting proteins played important roles in extracellular matrix (ECM)–receptor interaction, tight junction, focal adhesion, and adherens junction. The interaction between D. ferox and mammalian nasal epithelial cells included three major steps of pattern recognition, mucin connection and breakdown, and repair of ECM. The remodeling of ECM between epithelial cells of the nasal mucosa and epithelial cells of D. ferox may produce a stable adhesion environment for parasitism.ConclusionsOur study represents the first-ever attempt to propose a molecular model for specific parasitism. This molecular model may serve as a practical reference for parasitism models of other species and a theoretical foundation for a molecular process of parasitism.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.