Abstract

Camelids are characterized by their unique adaptive immune system that exhibits the generation of homodimeric heavy-chain immunoglobulins, somatic hypermutation of T-cell receptors, and low genetic diversity of major histocompatibility complex (MHC) genes. However, short-read assemblies are typically highly fragmented in these gene loci owing to their repetitive and polymorphic nature. Here, we constructed a chromosome-level assembly of wild Bactrian camel genome based on high-coverage long-read sequencing and chromatin interaction mapping. The assembly with a contig N50 of 5.37Mb and a scaffold N50 of 76.03Mb, represents the most contiguous camelid genome to date. The genomic organization of immunoglobulin heavy-chain locus was similar between the wild Bactrian camel and alpaca, and genes encoding for conventional and heavy-chain antibodies were intermixed. The organizations of two immunoglobulin light-chain loci and four T cell receptor loci were also fully deciphered using the new assembly. Additionally, the complete classical MHC region was resolved into a single contig. The high-quality assembly presented here provides an essential reference for future investigations examining the camelid immune system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.