Abstract

Aneuploidy is a hallmark of human solid cancers that arises from errors in mitosis and results in gain and loss of oncogenes and tumor suppressors. Aneuploidy poses a growth disadvantage for cells grown in vitro, suggesting that cancer cells adapt to this burden. To understand better the consequences of aneuploidy in a rapidly proliferating adult tissue, we engineered a mouse in which chromosome instability was selectively induced in T cells. A flanked by Lox mutation was introduced into the monopolar spindle 1 (Mps1) spindle-assembly checkpoint gene so that Cre-mediated recombination would create a truncated protein (Mps1(DK)) that retained the kinase domain but lacked the kinetochore-binding domain and thereby weakened the checkpoint. In a sensitized p53(+/-) background we observed that Mps1(DK/DK) mice suffered from rapid-onset acute lymphoblastic lymphoma. The tumors were highly aneuploid and exhibited a metabolic burden similar to that previously characterized in aneuploid yeast and cultured cells. The tumors nonetheless grew rapidly and were lethal within 3-4 mo after birth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.