Abstract

The natural clonal loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) is diploid (2n = 50) and produces genetically identical unreduced eggs, which develop into diploid individuals without any genetic contribution from sperm. Artificially sex-reversed clones created by the administration of 17alpha-methyltestosterone produce clonal diploid sperm. In metaphase spreads from testicular cells of the sex-reversed clones, spermatocytes had twice the normal number of chromosomes (50 bivalents) compared with those of normal diploids (25 bivalents). Thus, the production of unreduced diploid spermatozoa is initiated by premeiotic endomitosis (or endoreduplication), chromosome doubling before meiosis, and is followed by two quasinormal divisions. Larger nuclei in the germ cells were observed in all stages of type B spermatogonia in the testes of the sex-reversed clones. In contrast, besides having larger type A spermatogonia, the sex-reversed clones also had the type A spermatogonia that were the same size as those of normal diploids. It follows that chromosome duplication causing unreduced spermatogenesis occurred in the type A spermatogonia. The presence of tetraploid type A and early type B spermatogonia, identified by labeling with antispermatogonia-specific antigen 1, was verified using DNA content flow cytometry. These results support the conclusion that chromosome doubling occurs at the type A spermatogonial stage in diploid spermatogenesis in the clonal fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call