Abstract
The classical chromosome-banding techniques developed for mammalian chromosomes do not differentiate the euchromatic arms of Drosophila mitotic chromosomes. However, some of these techniques produce a sharp and highly reproducible banding of Drosophila heterochromatin. For example, the use of quinacrine-, Hoechst-, and N-banding differentiates Drosophila heterochromatin into 61 cytological entities, allowing precise localization of heterochromatic breakpoints. These banding techniques can also be successfully used to differentiate mitotic heterochromatin of various Drosophila and mosquito species. Here we present protocols routinely used in our laboratories for chromosome banding, including the use of Hoechst, 4',6-diamidino-2-phenylindole (DAPI), quinacrine, and Giemsa stains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.