Abstract

Proteins in the structural maintenance of chromosomes (SMC) superfamily play key roles in chromosome organization and are ubiquitous across all domains of life. However, SMC proteins are notably absent in the Desulfurococcales of phylum Crenarchaeota. Intrigued by this observation, we performed chromosome conformation capture experiments in the model Desulfurococcales species Aeropyrum pernix. As in other archaea, we observe chromosomal interaction domains across the chromosome. The boundaries between chromosomal interaction domains show a dependence on transcription and translation for their definition. Importantly, however, we reveal an additional higher-order, bipartite organization of the chromosome—with a small high-gene-expression and self-interacting domain that is defined by transcriptional activity and loop structures. Viewing these data in the context of the distribution of SMC superfamily proteins in the Crenarchaeota, we suggest that the organization of the Aeropyrum genome represents an evolutionary antecedent of the compartmentalized architecture observed in the Sulfolobus lineage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call