Abstract

Mouse spermatozoa and androgenetic one-cell embryos (androgenones) at various developmental stages were exposed to etoposide (1 μM), a topoisomerase II (topo II) poison, or to either of two catalytic inhibitors: ICRF-193 (10 μM) or merbarone (50 μM), for 2 h in order to study the clastogenic effects of these drugs on remodeled sperm chromatin. None of the drugs induced structural chromosome aberrations in condensed chromatin of spermatozoa. However, etoposide and merbarone exerted strong clastogenic actions on remodeled chromatin of androgenones. Expanding chromatin was most sensitive to both of these drugs at the time of pronuclear formation, as nearly 100% of androgenones exposed at this stage displayed structural chromosome aberrations. ICRF-193 did not affect sperm chromatin at all remodeling stages. A majority of the aberrations induced by etoposide and merbarone were of the chromosome-type. Chromosome exchanges, including translocation, dicentric, and ring chromosomes, preferentially appeared following exposure at the early stages of chromatin remodeling. Thus, despite their different modes of topo II inhibition, etoposide and merbarone showed similar clastogenic actions on remodeled sperm chromatin. These results suggest that the formation of transient DNA cleavage, mediated by ooplasmic topo II, accompanies the remodeling. The present findings provide insight into the mechanisms by which structural aberrations are generated in paternal chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.